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Mechanical models which imitate the behaviour of polyaramid fibres are discussed. The 
models were developed from a phenomenological standpoint but the parameters which 
characterize certain of the elements in the model agree fairly closely with measured 
elastic properties, suggesting that structural analogies may exist between the model and 
the material. 

l .  Introduction 
Mechanical models are frequently employed to 
imitate the deformation behaviour of solid poly- 
mers. They are of  value (a) if they help to indicate 
a convenient mathematical representation of the 
behaviour of the real material, permitting inter- 
polation and sometimes (but with caution) extra- 
polation; (b) if they predict critical or limiting 
conditions; and (c) if they indicate the kind of 
molecular mechanism that may be responsible 
for the observed deformation. Spring and dashp0t 
models are common in the polymer literature, 
most often in the form of the Maxwell body 
(spring and dashpot in series), the Voigt-Kelvin 
body (spring and dashpot in parallel), or the 
standard linear solid, which has three elements 
(two springs plus one dashpot, or one spring and 
two dashpots). The most popular form of the 
standard linear solid has a spring in parallel with 
a Maxwell body, and has been shown to have a 
constitutive equation identical to the one derived 
using the two-site model theory of thermally 
activated deformation and simplified using certain 
approximations [ 1 ]. 

The purpose of this paper is to develop a model 
which predicts compressive buckling in a rigid- 
rod polymer fibre, and which also predicts the 

form of the stress-strain characteristic under 
tensile loading subsequent to buckling. 

2. The Model 
The basic model is shown in Fig. 1. This is 
adequate to account for the buckling instability, 
but has to be modified to reproduce the observed 
tensile behaviour of buckled fibres. 

A conventional spring-and-dashpot model with 
all elements parallel does not lead to the predic- 
tion of buckling under compressive loads. A 
simple method of providing an element which 
buckles under a vertical load is shown in Fig. 1. 
AB and BC are rigid rods, connected together at 
B. The point A is fixed, but AB may rotate about 
A within the plane of the diagram. BC is connected 
at C to a spring (denoted $1) of stiffness El .  The 
connections at B and C also permit free rotation 
within the plane of the diagram, but do not allow 
movement normal to the plane. C is constrained 
to remain vertically below A. 

2.1. Behaviour  in uniaxial  compres s ion  
When a vertical compressive force is directed 
along XA the assembly will tend to buckle. This 
deformation will be opposed by a restoring force 
provided along DB by the horizontal spring 
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Figure 1 Basic model consisting of two springs, S~ and 
$2, and two rigid rods, AB and BC. Points A and D are 
fixed. AB and BC may rotate in the plane of the diagram 
and C is constrained to remain vertically below A. 

(denoted $2), of stiffness E2, which will prevent 
buckling until a limiting condition is reached. 
This limiting condition can be derived by reference 
to Fig. 2, in which a small angular displacement, 
a, has been given to the rigid rods. If  AB, BC and 
the two springs all have unit length, and if the 
applied vertical force is fa, then the force along 
CB and along BA is fa/COS a and the force along 
BD is therefore 2fa sin a/cos a. The strain in 
$2 is sin a so that the restoring force is E2 sin a. 
Hence, if E2 sin a > 2fa sin o/cos a then buckling 
will not occur. That is, buckling will not occur as 
long as 

or 

F,~ 
fa < - "  cos a (la) 

2 

fa < E2/2 ( lb)  

(a assumed small). 
In the above analysis it has been assumed that 

the horizontal spring is linear with stiffness E2. 
With such an element the small-strain tensile 
behaviour of the assembly will not imitate the 
measured characteristics [2], and to overcome this 
problem the linear spring may be replaced with 
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Figure 2 Deformation of the model under a vertical com- 
pressive load, F a. Buckling of the rigid-rod assembly 
ABC is shown by displacement, ~, to the vertical. This 
will not occur until a critical force is applied. 

one which has the following nonlinear behaviour: 

rre2 7r sin a 
F2 = E2e2 = K2 sin = K2 s i n - -  

62, m ff2,m 

where F2 is the force along BD, ez is the strain in 
the horizontal spring (= sin a), e2,m is the maxi- 
mum strain of spring $2 and K2 is a constant. (In 
this version of the model, E2 is not a constant.) 

The instability condition can be defined in the 
same way as before and if the perturbation, a, 
is considered to be sufficiently small that sin a 
e2,m, so that the small-angle approximation can 
be made for sin [(rr sin a)/e2,m], then 

K27r 
E 2 ~ - -  

e2,m 

This leads to an equivalent condition to that given 
in (Equation lb), i.e. 

K27r 
L <  - L  

2e2,m 

Once this critical value of fa is exceeded then 
buckling occurs and if loading is performed under 
deformation-controlled conditions then the 
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Figure 3 Force-strain diagram in compression for the 
body shown in Fig. 2 where S 2 is a nonlinear spring. 
G is the point at which buckling occurs and H represents 
the unloaded state corresponding to e 2 = e2. m in the 
element F 2. 

element spontaneously moves to the first unloaded 
state at which e2 =e2 ,m (see Fig. 3). At this 
point the angle of  AB and of  BC to the vertical 
has the limiting value c~ = a0 given by  e2,m -- sin 

O~ 0 . 
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Figure 4 Model modified by the addition of a dashpot, 
stiffness g, in the horizontal member BD. 
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Figure 5 Buckled model just before applying a vertical 
tensile force, fb, showing the setting angle, %. 

The purpose of this modification,  i.e. the intro- 
duction of  a nonlinear spring, is to model the 
behaviour of a buckled fibre under subsequent 
tension, but  before the analysis of  tensile loading 
let us consider an alternative mechanical model  
that might also be used to account for buckling 
and the subsequent tensile characteristics. This is 
shown in Fig. 4, in which the horizontal  spring 
has been replaced by a linear spring, stiffness E2, 
and dashpot,  stiffness/~. 

If  we choose to have a very stiff dashpot (g 
large) then it can be assumed that negligible 
deformation takes place within the dashpot during 
the timescale of the initial compressive deforma- 
tion, so that the buckling behaviour is exactly 
the same as that analysed above for the model  
shown in Fig. 1. Let us now assume that once 
buckling has been completed the body is allowed 
to rest for sufficient time for the dashpot to relax 
the spring $2; thereafter the external load is 
removed. The body will now take up the con- 
figuration shown in Fig. 5, with no stress along 
BD. AB and BC are til ted at ao to the vertical 
(kinked or buckled condition).  

However, whereas this model  using a linear 
spring and a linear dashpot is attractive since it 
uses elements common in the modelling of  solid 
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polymer behaviour, it suffers from the defect 
that in the presence of an initial imperfection 
(i.e. a nonzero tilt, a) any" applied compressive 
load however small will cause the model to ,buckle 
in time. The presence of the nonlinear spring in 
the earlier model allows "elastic behaviour" with 
buckling from the straight configuration to the 
configuration defined by e2,m. 

2.2. Behaviour in uniaxial tension 
If  a vertical tensile force fb is applied to the 
(undeformed) body shown in Fig. 1 then the 
spring with stiffness E1 takes up the total defor- 
mation and the constitutive equation can be 
written 

fb = elE1 

where ez is the strain in spring $1. Since the strain 
in the rigid-rod assembly, ABC, is zero, the net 
strain in AX is ei/3 (= e), so that: 

f b  = 3elEt. 

Now let us consider a similar test conducted on a 
body which has previously buckled in compression. 

2.2. 1. Nonlinear spring model 
Consider Fig. 2. In the buckled state under no 
external loading AB and BC will be at the limiting 
angle a = % to the vertical. When a tensile force, 
fb,  is directed along AX the spring St will deform 
and in addition the assembly ABC will tend to 
align itself to the vertical. The restoration of  
ABC to the straight (vertical) configuration will 
be resisted by the horizontal element, $2. The 
deformation in St is el =fb/Et. The deformation 
in the rigid-rod assembly can be obtained by con- 
sidering the equilibrium conditions at C and B. 
In CB the force is]io/cos c~ and the force along BD 
will therefore be 2fb sin c~/cos a. Hence, the defor- 
mation of $2 (nonlinear) will be given by: 

sin a 7r s i n  a 
2fb -- K2 s i n -  

cos a sin % 

or  

2fbG 2 ~e2 
- K2 sin 

COS O~ e2,m 

i . e .  

fb = ~ e (  1 s i n - -  (2) 
e2 ,m 

For the case of  small angles, 

K 2 . fra 
fb = - -  sln - -  (2a) 

2a a0 

We note that as a varies from ao to zero, the value 
of  fb varies from zero to the previously deter- 
mined buckling load (i.e. K2 lr/2ao). That is, the 
value of  the tensile load required to straighten the 
structure ABC is equal to the critical buckling 
load. Now, the contribution to deformation by the 
rigid-rod assembly is 2(cos a -- cos ao) = (a~ -- 
~2 ) -- 2 = (e2,m --e~). Hence, the total strain (appro- 
priately weighted to account for the lengths of  the 
component elements) is 

-&+!(4 = 
1 

e = 2El 3 3El "3 ( e 2 ' m  - -  e~) 

(3) 

where e2(fb) is given by Equation 2. 
By appropriate choice of fitting parameters in 

Equations 2 and 3, the tensile behaviour shown by 
compressed fibres [2] can be reproduced approxi- 
mately. 

At this stage it is convenient to introduce an 
approximation that leads to a form of the 
expression for the strain, e(fb), which will provide 
a useful comparison with a result derived in a later 
section. The approximation we introduce here is as 
follows: 

fb = - -  san 1 -- (2b) 
2a a0 2% \ 

Essentially, this approximation can be written sin 
x ' x (1 - - x /n ) .  The function sin x/x ( 1 - - x / n )  
shows a monotonic increase from unity (at x = O) 
to a maximum of 4#r at x = n/2, indicating that 
the proposed substitution does not seriously alter 
the analysis. It then follows that a~ao (1 - -  
fb/fe), where fe=K21r/2ao, and using this 
approximate expression for a we can rewrite the 
total-strain expression in the approximate form 

2 
fb + % [1 _ ( l _ f b / f c ) 2 ]  0 ~<fb <~f c 

e = 3E---~ 3 

(4a) 

Once the load in tension equals fc the rods are 
straight and the total-strain expression becomes 

]i, 4 
e = - -  + - -  Ce ~<fb (4b) 

3Et 3 

Subsequent loading then corresponds to the 
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response of  the linear spring, $1. By  appropriate 
choice of  fitting parameters in Equations 4a and 
4b the tensile behaviour shown by compressed 
fibres can be reproduced approximately. 

2.2.2. Model in which restoring force is 
provided by a Maxwell body, 

In the previous section we showed how the non- 
linear model provides a description of the tensile 
behaviour of  previously compressed fibres. In this 
section, we discuss the case of  a Maxwell body and 
note, as in the case of the prediction of the 
buckling load, that whereas this model can provide 
an approximate expression for the total strain it 
suffers some defects. Consider the configuration 
shown in Fig. 5, and let us assume that the tensile 
test is conducted in a time sufficiently short for 
the motion of the dashpot to be negligible. 

On applying a vertical tensile force, fb,  along 
AX the spring $1 and the rigid-rod assembly will 
both deform, as described in the previous section. 
As before, the total strain, e, is given by Equation 
3 where e2, m ~ sin So and e2 = sin s and where 
s is the angle of AB and BC to the vertical when 
fb is the applied force and s0 is the buckled value 
of s before application of  the tensile force. It is 
convenient to make the small-angle approximation 
so that Equation 3 can be written: 

Jab 1 2 e - - q -  -- = :ffSo s 2) (3a) 
3El 

The strain in the horizontal element is 

sin so -- sin a = S o - - a  

(referred to the buckled starting configuration). 
From a consideration of force equilibrium at B 
we can write 

2fb sin a / c o s s  = E2(ao - - a )  = 2fbS(1 + S2/2) 

(5a) 

Or, if a is small, 

2fba = E2(a o -- a) (5b) 

o r  

E2 S o - ~  
f b -  

2 

In contrast to the case with the nonlinear spring, 
we note that fb varies from zero when s = ao to 
infinitely large values when s = 0. If, however, 
we solve for c~ and substitute into Equation 3a 

we find 

: b  + 
e = 3E1 3 3(E2 + 2Yb) 2 (6) 

In this expression fb can range from zero to 
arbitrarily large values without consideration of 
separate expressions corresponding to straighten- 
ing of  the rigid rods, as in Equations 4a and 4b. 

Equation 6 can be written in the form: 

fb + _ ~  [1 1 1 e = 3e l  (1 + (7) 

This expression should be contrasted with 
Equations 4a and 4b. 

It is instructive to differentiate this expression 
with respect to fb in order to examine its 
properties, i.e. 

de 1 4 ~  

dfb 3E1 3E1(1 + 2fb/E2) 3 

When fb is large de/dfb -> 1/3Ea, as for the body 
tested in tension without a preliminary com- 
pressive buckling. At small values of  fb the 
gradient de/dfb is larger (i.e. dfb/de is smaller), 
indicating a smaller initial modulus. The modulus 
is predicted to rise towards the limiting value of 
3E1 a s f  b gets larger. 

3. Results 
Fig. 6 shows the load-deformation behaviour 
obtained by DeTeresa [3] for a sample of  Kevlar 
49. Also shown is the form of  Equation 7 when 
3E1 = 145 GN m -2 (the measured tensile modulus 
of  the as-prepared fibre and the limiting slope of 
the characteristic obtained with buckled fibres 
tested in tension), S2o/3 --- 0.0214 and E2 = 0 . 3 2  
G N m  -2. These parameters were obtained by 
curve fitting. The value of so so derived is thus 
approximately i4.5 ~ , and the small-angle approxi- 
mation used to obtain Equation 7 is therefore not 
unreasonable. The value E2 obtained here leads 
to the prediction that buckling may occur when 
the compressive stress exceeds 0 . 1 6 G N m  -2. This 
is a rather low value, but there are few experi- 
mental data with which to compare it. DeTeresa 
et al. [2] indicate that buckfing occurs for a 
compressive strain < 3%, which gives an upper 
limit of  4.35 GN m -2 for the corresponding stress 
using their value of 1 4 5 G N m  -2 for Young's 
modulus. More recent measurements [3] show 
that buckl ing occurs at strains much closer to 
0.3%, giving much better agreement with the 
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Figure 6 Stress-strain data obtained in tension by DeTeresa for (a) as received Kevlar 49 (broken line) and (b) Kevlar 
49 which had been subjected to compression (solid line). The crosses show points satisfying Equation 7 w h e n f b / 3 E  1 = 
145 GNm -2, a02/3 = 0.0214 and E~ = 0 . 32GNm -~. The open circles show points satisfying Equations 4a and 4b if 
fb/3E1 ~ 145 G N m  -2 , a~/3 = 0.0214 andre  = 0.4 G N m  -2. 

model. It is also notable that the value of  E2 is 
reasonably close to the value of  the transverse 
modulus of  Kevlar 49 (= 0 .76GNm-2) ,  obtained 
by Phoenix and Skelton [4]. 

In the model corresponding to Equations 4a 
and 4b let us choose to take 

and 

- - =  0.0124 
3 

3E1 = 1 4 5 G N m  -2 

fe - K2~ _ 0.4 GN m -2 
2a0 

A plot of  values obtained from Equations 4a and 
4b is also included in Fig. 6. It is clear from Fig. 6 
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that both models provide reasonable approxi- 
mations to the behaviour of  a compressed fibre in 
tension while at the same time providing a descrip- 
tion of the kinking of  fibres under compression. 

4. Discussion 
The model presented here reproduces the essential 
features of  the behaviour of polyaramid fibres 
when tested parallel to the fibre axis. The limiting 
compressive strength has been derived from the 
model using data obtained in tension only on a 
previously buckled fibre. Mechanical models are 
notorious for the lack of  agreement between the 
parameters required to fit behaviour under 
different modes of  loading, so this result should 
not be taken too seriously without further investi- 
gation. It does indicate, nevertheless, the need to 



increase the fibre stiffness perpendicular to the 
fibre axis in order to improve the capability of 
the fibres and their composites in compression. 

The version of the model presented in Figs. 1 
and 2 in which S2 was given nonlinear (sinusoidal) 
behaviour does not lead to any simple molecular 
analogy because of the unusual form of the defor- 
mation of this horizontal element. The Maxwell 
body which replaces it in Figs. 4 and 5 is much 
more familiar, and can be taken to model a com- 
bination of elastic deformation (bond stretching, 
bond-angle deformation), and viscous flow or 
conformational changes, as in many conventional 
simple analyses of viscoelasticity. It is for this 
reason, as well as because this version of the model 
gives a more convenient mathematical form, 
that we suggest that it can be used effectively as 
long as its limitations are understood. 

The model includes what appears to be an 
innovation in polymer mechanics, namely the 
introduction of rigid rods. It is necessary to con- 
sider whether this innovation is essential and/or 
useful or instructive. It is interesting to consider 
whether it has any structural significance, but 
before dwelling on these matters we will anticipate 
a result obtained below where the model is further 
modified to eliminate the rigid rods. Hence, we 
will here simply observe that the structural 
analogue to the model shown in Figs. 4 and 5 
would probably consist of hard and soft segments 
in series, with the soft segments having stiffness 
Ex and the hard segments a much higher stiffness, 

giving negligible deformation in the axial (vertical) 
direction. I f  the hard segnents were hinged so 
that in compression they tended to collapse in 
the same manner as the model before the soft 
segments failed, it is possible that a quite close 
analogy might be established. Whereas such 
materials may exist and may be of importance, 
they are not the subject under scrutiny here, and 
the model may be further modified to eliminate 
the rigid rods. 

Although the idea of modelling "rigid rod 
molecule" behaviour with rigid-rod elements 
might appear to be appealing, the latter are 
assumed to be infinitely stiff and can therefore 
be of limited value only in imitating real materials. 
Thus we have examined the properties of the body 
shown in Fig. 7 in which the rigid rods AB, BC 
have been replaced by stiff springs of equal stiff- 
ness, Ea. The presence of these deformable 
elements removes the need for the element shown 
in Figs. 1, 2, 4 and 5 as $1. The springs AB and BC 
now shorten under compressive loading, but the 
instability is still governed by the restoring force 
along BD and it is easily seen that the same 
instability condition (fa >~ E2/2) exists. 

To derive the behaviour of the body in tension 
after compressive buckling the same procedure is 
used as before, with the springs AB and BC begin- 
ning with a setting angle ao to the vertical, as 
shown in Fig. 8. Again, the body is assumed to 
reside for sufficient time in the unloaded con- 
dition to release the springs through the operation 

A Dl %t  ~ 
S 2 ~ Stiffness, 

Figure 7 Model in which rigid rods have been 
eliminated. The two springs AB and BC have 
the same stiffness, fla- The points A, B, C and D 
have the same constraints as in Fig. 1. 
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Figure 8 The model shown in Fig. 7 after buck- 
ling in compression to a setting angle, c%. 

of viscous processes before commencing with the 
tensile test. Now the strain in AB and BC must 
be taken into account as well as the contribution 
that comes from reducing So to a smaller value 

when under a tensile load lb. Hence, the strain 
now becomes 

e =E~fb + (cos ~ -- cos So) = [b/;. + ~ ( ~  _ ~2) 

(8) 

In the horizontal element we have, as before 
(Equation 5b), 

E 2 ( ~ o - a )  = 2fb~ 

and on substituting for a in Equation 8 the 
expression for the strain becomes: 

fb +_~[1 1 ] 
e = E--: (1 + 2fb/E2) ~ (9) 

This is identical in form to Equation 7, and its use 
would have lead to the same value of Ez as found 
above. % would now become 12 ~ (~g/2 = 0.0214). 
Therefore, it is not necessary to invoke the use of 
rigid-rod elements. 

Thus, on reference to Figs 7 and 8, we may 
now speculate that an analogy exists between our 
mechanical model and a so-called rigid-rod mole- 
cule or rigid-rod molecule fibril. The high axial 
stiffness is modelled by stiff springs which are 
hinged, leading to the possibility of buckling 
under compressive loads. The hinges could be 
intramolecular, intermolecular, or may require 
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to be specified on a larger scale, relating to fibril 
structure. The horizontal element models the 
intrinsic resistance of the bond to bending in the 
case of a single molecule, or to the interaction of 
the molecule (or fibril) with the surrounding 
matrix in the more general case. 

Finally, we wish to note that in indicating 
possible analogies between our models and rigid- 
rod polymer fibres we have not attempted to take 
into account the residual stresses which form 
during spinning. It has been proposed that these 
residual stresses have an important influence on 
the strain hardening behaviour ofpoly-p-phenylene 
benzobisthiazole fibres when tested in tension 
[5]. It is worth emphasizing here that the tensile 
stress-strain behaviour under examination in the 
current paper relates to fibres previously tested 
in compression, and it seems likely that fibres 
which are buckled will have a residual stress 
distribution quite different from that of those 
in the as-spun state. 

5. Conclusion 
A simple model has been developed to imitate the 
behaviour of polyaramid fibres under uniaxial 
compression and subsequent tension. Qualitatively, 
the model incorporates the observation that kinks 
are found to be present in Kevlar and other rigid- 
rod fibres which have been subjected to com- 
pressive loading and that these kinks can be 
removed by subsequent tensile loading. This is 
accompanied by a steepening of the tensile stress- 
strain curve and this stiffening is retained if the 



fibres are unloaded then reloaded [3]. The 
quantitative agreement with experimental data 
is reasonably good with the fitting parameter, E2 
(the stiffness of the horizontal element), reasonably 
close to the transvers e modulus, and the instability 
condition predicted from the parameters obtained 
from tensile testing is in reasonable accord with 
observation. Given the difficulties surrounding the 
testing of fibres and the consequent variablity 
of experimental data, the model seems to give a 
good description of the true material behaviour. 
Thus, the proposal [2] seems to be a good one 
that the progressive reduction and removal of 
kinks accounts for the shape of the tension stress- 
strain curve obtained with fibres which had been 
compressed previously along the fibre axis. This 
study again emphasizes the need to improve the 
transverse stiffness of  high-performance fibres. 
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